Search results for " electroluminescence"
showing 7 items of 7 documents
Electrical-optical characterization of multijunction solar cells under 2000X concentration
2014
In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties…
Morphological, electrical and optical properties of organic light-emitting diodes with a LiF/Al cathode and an Al-hydroxyquinoline/diamine junction
2004
Abstract We report the results of the morphological, electrical and optical characterisation of double-layer Alq3-based organic emitting diodes with a lithium fluoride (LiF)/Al cathode. A detailed electron microscopy investigation of their cross-section shows the presence of LiF isolated grains underneath the Al film. Due to the introduction of the LiF layer, luminance was larger than 30,000 cd/m2 at a bias voltage VB=25 V with a maximum external luminous efficiency as large as 46 lm/W at VB=20 V. Performing on/off VB cycles at a very low frequency, each time a recovery of the initial electric and luminous performance was observed. The non-exponential decay of both electric current and lumi…
Electron drift properties in high pressure gaseous xenon
2018
[EN] Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and di¿usion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent ampli¿cation, a 1:2 scale model of the future NEXT-100detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December2016. The drift parameters have been measured using 83mKr for a range of reduced drift ¿elds at two di¿erent pressure regimes, namely 7.2 bar and 9.1 bar. Theresults have been comp…
Millisecond radiative recombination in poly(phenylene vinylene)-based light-emitting diodes from transient electroluminescence
2007
The current and electroluminescence transient responses of standard poly phenylene vinylene -based light-emitting devices have been investigated. The electroluminescence time response is longer milliseconds scale than the current switch-off time by more than one order of magnitude, in the case of small area devices 0.1 cm2 . For large area devices 6 cm2 the electroluminescence decay time decreases from 1.45 ms to 100 s with increasing bias voltage. The fast current decay limits the electroluminescence decay at higher voltages. Several approaches are discussed to interpret the observed slow decrease of electroluminescence after turning off the bias. One relies upon the Langevin-type bimolecu…
Electroluminescence and transport properties in amorphous silicon nanostructures
2006
We report the results of a detailed study on the structural, electrical and optical properties of light emitting devices based on amorphous Si nanostructures. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature electroluminescence (EL), with the advantage of being formed at a temperature of 900 °C, while at least 1100 °C is needed for the formation of Si nanocrystals. Optical and electrical properties of amorphous Si nanocluster devices have been studied in the temperature range between 30 and 300 K. The EL is seen to have a bell-shaped trend …
Ionization and scintillation response of high-pressure xenon gas to alpha particles
2013
High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements add…
Luminescent Ionic Transition-Metal Complexes for Light-Emitting Electrochemical Cells
2012
Higher efficiency in the end-use of energy requires substantial progress in lighting concepts. All the technologies under development are based on solid-state electroluminescent materials and belong to the general area of solid-state lighting (SSL). The two main technologies being developed in SSL are light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs), but in recent years, light-emitting electrochemical cells (LECs) have emerged as an alternative option. The luminescent materials in LECs are either luminescent polymers together with ionic salts or ionic species, such as ionic transition-metal complexes (iTMCs). Cyclometalated complexes of Ir(III) are by far the most util…